Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix — The full report

نویسنده

  • J. Charles Gilbert
چکیده

The plain Newton-min algorithm to solve the linear complementarity problem (LCP for short) 0 6 x ⊥ (Mx + q) > 0 can be viewed as a semismooth Newton algorithm without globalization technique to solve the system of piecewise linear equations min(x,Mx + q) = 0, which is equivalent to the LCP. When M is an M-matrix of order n, the algorithm is known to converge in at most n iterations. We show in this paper that this result no longer holds when M is a P-matrix of order > 3, since then the algorithm may cycle. P-matrices are interesting since they are those ensuring the existence and uniqueness of the solution to the LCP for an arbitrary q. Incidentally, convergence occurs for a P-matrix of order 1 or 2. Key-words: linear complementarity problem, Newton’s method, nonconvergence, nonsmooth function, M-matrix, P-matrix. † INRIA Paris-Rocquencourt, team-project Estime, BP 105, F-78153 Le Chesnay Cedex (France); e-mails : Ibtihel.Ben [email protected], [email protected]. in ria -0 04 42 29 3, v er si on 5 17 D ec 2 01 2 Non convergence de l’algorithme de Newton-min simple pour les problèmes de complémentarité linéaires avec P-matrice — Le rapport complet Résumé : L’algorithme Newton-min, utilisé pour résoudre le problème de complémentarité linéaire (PCL) 0 6 x ⊥ (Mx + q) > 0 peut être interprété comme un algorithme de Newton non lisse sans globalisation cherchant à résoudre le système d’équations linéaires par morceaux min(x,Mx+ q) = 0, qui est équivalent au PCL. Lorsque M est une M-matrice d’ordre n, on sait que l’algorithme converge en au plus n itérations. Nous montrons dans cet article que ce résultat ne tient plus lorsque M est une P-matrice d’ordre n > 3; l’algorithme peut en effet cycler dans ce cas. On a toutefois la convergence de l’algorithme pour une P-matrice d’ordre 1 ou 2. Mots-clés : fonction non-lisse, méthode de Newton, non-convergence, M-matrice, P-matrice, problème de complémentarité linéaire. in ria -0 04 42 29 3, v er si on 5 17 D ec 2 01 2 Plain Newton-min algorithm for linear complementarity problems 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

A Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem

In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.

متن کامل

Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix

The plain Newton-min algorithm to solve the linear complementarity problem (LCP for short) 0 ≤ x ⊥ (Mx + q) ≥ 0 can be viewed as a semismooth Newton algorithm without globalization technique to solve the system of piecewise linear equations min(x, Mx + q) = 0, which is equivalent to the LCP. When M is an M-matrix of order n, the algorithm is known to converge in at most n iterations. We show in...

متن کامل

Nonconvergence of the

The plain Newton-min algorithm to solve the linear complementarity problem (LCP for short) 0 6 x ⊥ (Mx + q) > 0 can be viewed as a semismooth Newton algorithm without globalization technique to solve the system of piecewise linear equations min(x,Mx + q) = 0, which is equivalent to the LCP. When M is an M-matrix of order n, the algorithm is known to converge in at most n iterations. We show in ...

متن کامل

Improved infeasible-interior-point algorithm for linear complementarity problems

We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012